PV = nRTR = .0821

Combined Gas Law $P_1V_1/T_1 = P_2V_2/T_2$ T = Kelvin

1. What are the two forms of measuring gas pressure and what is the conversion between the two.

mm Ha (torr) 760 =

Sulfur dioxide, a gas that plays a central role in the formation of acid rain, is found in the exhaust of automobiles and power plants. Consider a 1.53 L sample of gaseous SO_2 at a pressure of 5.6 x 10^3 mmHg. If the pressure is changed to 1.5 x 10⁴ mmHg at a constant temperature, what will be the new volume of the gas? Which law will be used in this question?

 $\frac{P_1 V_1 - P_2 V_2}{T_1} = \frac{P_1 V_1 T_2}{T_2} = \frac{P_1 V_1 T_2}{T_2} = \frac{P_2 V_2}{T_2} = \frac{P_1 V_1 T_2}{T_2} = \frac{P_2 V_2}{T_2} = \frac{P_2$

and 1 atm? Which law will be used in this question?

P₁V₁ = P₂V₂
$$\frac{P_1V_1 T_2}{T_1 P_2 T_2} = V_2 \frac{1.0.58)311}{288} = 0.78atm$$
P-constant

4. A sample of hydrogen gas has a volume of 8.56L at a temperature of 0°C and a pressure of 1.5 atm. Calculate the moles of H₂ molecules present in this gas sample.

5. Suppose we have a sample of ammonia gas with a volume of 3.5 L at a pressure of 1.68 atm. The gas is compressed to a volume of 1.35L at a constant temperature. Which gas law will be used in this example and what is the final pressure?

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_1}$$
 $\frac{P_1V_1T_2}{T_1V_2} = \frac{P_2}{T_1} \frac{(3.5)(1.68)T}{(1.350)(T_1)} = \frac{(4.35)(1.68)T}{(1.350)(T_1)} = \frac{(4.35)(1.68)T}{(1.35)(T_1)} = \frac{(4.35)(1.68)T}{(4.35)(T_1)} = \frac{(4.35)(1.68)T}{(4.35$

6. A 5 g sample of Methane (CH₄) gas that has a volume of 3.8 L at 5° C is heated to 86°C at constant pressure of 2 atm. Calculate its new volume.

59 109 = 6,312 mel

V = net

0.312 (0.021) (359)

7. A sample containing 35 mol argon gas at a temperature of 13°C and a pressure of 897mmHg Calculate the change in volume that occurs when the temperature increases to 23°C.

$$V = \frac{0.27}{9} = \frac{0.35 \cdot 0.0821 \cdot 294}{1.18}$$

A steel reaction vessel of a bomb calorimeter, which has a volume of 75.0mL, is charged with oxygen gas to a pressure of 145 atm at 22°C. Calculate the moles of oxygen in the reaction vessel.